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Vertical forcing of a fluid layer leads to standing waves by means of a subharmonic 
instability. When the driving amplitude and frequency are chosen to be near the 
intersection of the stability boundaries of two nearly degenerate modes, we find that 
they can compete with each other to  produce either periodic or chaotic motion on 
a slow timescale. We utilize digital image-processing methods to determine the 
t,ime-dcpendent amplitudes of the competing modes, and local-sampling techniques 
to study the onset of chaos in some detail. Reconstruction of the attractors in phase 
space shows that in the chaotic regime the dimension of the attractor is fractional 
and at least one Lyapunov exponent is positive. The evidence suggests that  a theory 
incorporating four coupled slow variables will be sufficient to account for the mode 
competition. 

1. Introduction 
A variety of recent experiments have demonstrated that the broadband spectra 

sccn in some dissipative hydrodynamic systems are associated with strange attractors. 
That is, the trajectories representing the dynamics in phase space lie on a complicated 
attracting set. Chaotic time dependence arises because nearby trajectories diverge 
from each othor cxponentially on the average, yet remain within a finite basin of 
attraction and converge to a zero-volume-limit set (Ruelle 1980 ; Lanford 1981). These 
conditions imply that the attractor is folded into an infinite number of layers 
(hypersurfaces) and is therefore generally an object with fractional dimension. (For 
a review see Farmer, Ott & Yorke 1983.) The properties of fractional dimension and 
exponential divergence of nearby trajectories (positive Lyapunov exponent) have 
been seen in many nonlinear models consisting of three or more coupled ordinary 
differential equations. Recently, fractional dimension has been demonstrated in 
experimental studies of circular Couette flow (Brandstater et al. 1983), Rayleigh- 
BBnard convection (Malraison et al. 1983), and a differentially heated rotating 
annulus (Guckenhcimer & Buzyna 1983). A positive Lyapunov exponent was found 
in the Couette-flow cxperiments, but was not measured in the other cases. Unfortun- 
ately, the physical origin of the chaotic states is not yet known. I n  some cases 
transition sequences (for example, successive period-doubling in Rayleigh-BBnard 
convection) can be correlated with the behaviour of simple nonlinear models. 
However, mathematical models that  incorporate the correct dynamics and allow a 
priori prediction of the behaviour as a function of external parameters are not 
generally available (Miles 1 9 8 4 ~ ) .  

t Permanent address : Istituto Nazionale di Ottica, 501 25 Arcetri-Firenze, Largo Enrico 
Fwmi 6. Italy. 
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I n  the present paper we consider the standing surface waves excited on a cylindrical 
fluid layer by a small vertical oscillation of the container, a system first studied by 
Faraday (1831). The linearly unstable modes are similar to  the modes of a drum. We 
find experimentally that, in a region of parameter space near the intersection of the 
stability curves for two nearly degenerate modes, both modes can be present 
simultaneously, and they interact with each other to produce slow oscillations in the 
surface-wave pattern. These oscillations are chaotic for a certain range of driving 
amplitude and driving frequency. The observations provide a clear physical mechanism 
for the onset of chaotic time dependence: mode competition. Although various 
simplified models of chaotic fluid motion have their basis in the interaction between 
discrete spatial modes (for example, see Curry 1978), experimental methods capable 
of providing a time-dependent modal decomposition have not been generally 
available. 

In  the experiments reported here we were able to measure the mode amplitudes 
by a novel application of digital imaging methods in conjunction with time-resolved 
spatial Fourier analysis. These methods allowed us to determine linear combinations 
of the time-dependent amplitudes in the modal superposition under certain conditions. 
We found that the noisy oscillations result from the interaction between only two 
spatial modes. We also reconstructed the attractors from locally sampled time series, 
and measured the dimension in the regime of chaotic mode competition. The 
dynamics can be represented by a fractal attractor of dimension between two and 
three, the exact value depending on the driving amplitude. Finally, we showed that 
there is a t  least one positive Lyapunov exponent. 

The experimental observations and available theory suggest that a model consisting 
of four coupled slow variables can account for the mode competition. However, the 
derivation of a suitable model from the equations of motion presents significant 
mathematical difficulties. 

This paper extends our preliminary results published earlier (Ciliberto & Gollub 
1984). We describe the experimental configuration and the qualitative behaviour of 
the system in $2. The digital imaging methods used to study mode amplitudes are 
discussed in $3, with the evidence for mode competition. Measurements based on time 
series of the locally sampled light intensity, including spectra and reconstructions of 
the attractors in phase space, are given in $4. The measurements of attractor 
dimension are presented in $5. Finally, we summarize and discuss our conclusions 
in $6. 

2. Experimental configuration and qualitative behaviour 
2.1. Fluid cell and optics 

The system we have studied is a cylindrical fluid layer about 1 cm deep in a Plexiglas 
vessel of interior radius R = 6.35 cm. (The cell is cylindrical to within about 0.01 cm.) 
Because surface contamination is known to affect the dissipation of the waves (Miles 
1967), we use distilled and de-ionized water that has been passed through both a 
carbon adsorber to  remove organic contaminants and a filter for particulates. 
Temperature control of the system to within 0.1 "C reduces thermal variations in 
surface tension and viscosity to an insignificant level. 

The fluid cell is mounted on the cone of a loudspeaker in a way that allows vertical 
forcing with an amplitude of 0-200 pm while still permitting light to be transmitted 
vertically through the cell (see figure 1 a ) .  Reasonable precautions are taken to ensure 
that the oscillation direction and cell axis are vertical. The driving frequency is 
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FIQURE 1.  (a )  Schematic diagram of the apparatus. The position-sensing detector (PSD) is used 
to determine the imposed amplitude of oscillation of the cell. ( b )  Electronics to allow later 
synchronization of the digitized video signal with the forcing (see $3) by recording of pulses on the 
audio channel of the video recorder. (c) Electronics for video digitization. 

derived from a synthesizer and is stable to about 0.001 yo. The imposed-oscillation 
amplitude is measured using a laser beam reflected from a mirror attached to the cell, 
in conjunction with a position-sensing photodiode. The cell motion is sinusoidal to  
good accuracy. 

Despite our best efforts, we found that the resonant frequencies of the modes of 
interest tend to  drift slowly by as much as 0.3% in one day. A possible cause is 
unavoidable variations in the shape of the contact line between the meniscus and 
vertical wall. These drifts, though slow and small, limit our ability to explore in detail 
the phenomena of interest, since the region of mode competition is only about 1.5 yo 
wide in driving frequency. 

The surface deformation was studied by allowing a parallel (and expanded) laser 
beam to pass vertically through the cell. The use of a laser gives better collimation 
than is normally obtained with other sources, but the speckle pattern produced by 
coherent light has to be avoided. We accomplished this by placing a rapidly spinning 
translucent disk a t  the focal point of the beam expander in order to dephase the light. 
The image formed on a translucent screen located 6 cm above the fluid surface is 
recorded on videotape and digitized (see $3) .  

2.2. Phase diagram 
The linearly unstable modes for the surface displacement have the following form : 

(2.1) fJlm(r,  6 )  = J , ( k , ,  r )  sin (16+&m)> 
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where the J ,  are Bessel functions of order 1. The wavenumber k,, is determined by 
the boundary condition that the derivative Ji (k , ,  R )  = 0. The modes may be labelled 
by the indices ( I ,  m), where 1 is the number of angular maxima and m - 1 (or m if 1 = 0) 
is the number of noda! circles. The displacement field may be written as a 
superposition of these modes with time-dependent coefficients alm(t)  (Benjamin & 
Ursell 1954) : 

(2.2) 

(In principle, the phases $lm may also be time dependent. However, for the 
phenomena described in this paper, they were observed to be time independent, 
though different from run to run.) A given mode develops a parametric instability 
when the corresponding eigenfrequency is approximately in resonance with half the 
driving frequency f o ,  and in addition the driving amplitude A exceeds a threshold 
value A,. This process leads to standing waves in which the mode amplitude oscillates 
at a fo. To take into account the possibility of a further slow modulation of the mode 
amplitudes, which in fact occurs owing to mode competition, we write each amplitude 
in terms of fast oscillations a t  i f o  and slow envelopes gl,(t) and h,,(t) : 

(2.3) 

The index m will generally be suppressed when there is no ambiguity. 
We explored the behaviour of the system as a function of A and fo, and identified 

about 30 modes. As examples, we show images of the (4, 3) and (7,  2) modes in figure 2. 
These were obtained at a driving amplitude of about 1.1A, (50 pm). The surface 
is depressed by about 0.5 mm in the dark regions and elevated in the bright regions. 
These are instantaneous images; one half cycle later the bright and dark regions are 
interchanged. The (7 ,  2) mode shown in the figure therefore has seven nodal diameters 
dividing the circumference into 14 regions of alternating elevation and depression. 
Although the angular symmetry is obvious from the image, the radial index m is not. 
However, we were able to determine accurately the radial index by comparing the 
observed oscillation frequency with the calculated frequencies for modes with the 
same angular symmetry. Agreement to within about 2 %  for all 30 modes gave us 
confidence in our ability to identify modes when only a single one is present. Finally, 
we note that the images contain a significant amount of fine structure caused in part 
by capillary waves, and in part perhaps by artifacts of the imaging, since there is 
not an exact one-to-one correspondence between points on the fluid surface and points 
on the image plane in shadowgraphs. 

The behaviour of the system as a function of A and f , ,  is shown in figure 3. This 
is only a small part of the phase diagram; i t  covers a range of about 4 yo in driving 
frequency that includes the modes of figure 2 .  We selected this region for detailed 
study for reasons of experimental convenience, but other regions of the phase diagram 
also show mode competition. Below the parabolic stability boundaries, the surface 
is essentially flat, except for a small circularly symmetric response at  the driving 
frequency caused by the meniscus a t  the outer boundary of the fluid layer. Above 
the stability boundaries, the fluid surface oscillates a t  half the driving frequency in 
a single stable mode. The shaded areas are regions of mode competition, in which 
the surface can be described as a superposition of the (4, 3) and ( 7 ,  2 )  modes with 
amplitudes having a slowly varying envelope in addition to  the fast oscillation at  i f o .  
These slow variations can be either periodic with a typical period of about 15 s, or 
chaotic (see $4). The boundary of the periodic region seems to be non-hysteretic, and 
the transition there is continuous. This may be contrasted with the line separating 

z ( r ,  8,  t )  = C al,(t) h',,(r. 0). 
L m  

a,,(t) = s,,(t) cos (nfo t )  +h,,(t)  sin (7% t ) .  
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FIGURE 2. Optical-intensity patterns for the (4, 3 )  and (7 ,  2 )  modes, respectively. 
The first index gives the number of angular maxima. 
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FIGURE 3. Phase diagram as a function of driving amplitude A and frequency f,,. The crosses are 
experimentally determined points on the stability boundaries. Stable patterns occur in the regions 
labelled (4, 3) and (7, 2). Slow-periodic and chaotic oscillations involving competition between these 
modes occur in the shaded regions. 

the periodic and chaotic regions, which does show some hysteresis (possibly caused 
by pinning of the contact line). It is drawn for increasing A in figure 3. 

At driving amplitudes higher than those shown in figure 3 the surface can become 
chaotic even if the driving frequcncy is resonant, so that a single mode is dominant. 
A study of some of these phenomonct (involving t h e  breakdown of a single mode) has 
been given by Gollub & Meyer (1983). I n  the prcsent paper, wc focus our attention 
on the regions of mode competition near thc intersections of the stability boundaries. 

We note that the boundary of the higher-frequency mode ends where the two lines 
intersect, while the boundary of the lower-frequency mode continues. The same 
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behaviour also occurs for other intersecting modes. Perhaps this elementary property 
of the phase diagram has a simple explanation; it does not appear to have been noted 
before. 

3. Digital imaging measurements 
3.1. Video digitization 

Because the images of the surface-wave patterns preserve the symmetry of the 
underlying modes, it is possible to  extract the time-dependent mode amplitudes 
semiquantitatively under certain conditions by digital analysis of the images. We will 
describe first our technique and then its advantages and limitations. 

The optical intensity on the screen I ( r ,  0, t )  is converted to an analog signal by a 
vidicon camera, and is stored on videotape for later quantitative analysis. We are 
interested in the slowly varying parts of the mode amplitude a z ( t ) ,  since the fast 
oscillation contains no useful information. We are able to measure a fixed linear 
combimtionaf(t)  of the slow coefficientsgz(t) and h,( t )  by synchronizing the digitization 
of the video signal with the vertical acceleration of the fluid. (It would be better to 
measure the slow coefficients independently, but this would be much more complic- 
ated.) We accomplished this as follows. The frame-start pulse is extracted from the 
video signal and compared with the phase of the driving oscillator. When these are 
coincident (within a selected window) a pulse is sent to the audio channel of the video 
recorder. This process is shown schematically in figure 1 ( h ) .  When the tape is later 
played back for digitization of the image, the pulses on the audio channel are used 
to determine which video frames have the proper phase to acquire. 

Images from the tape are digitized by a fast %bit analog-to-digital converter 
(figure l c )  that resides on the bus of an LSI 11/23 computer. The frame grabber and 
frame store (separate from the computer memory) are special-purpose boards 
manufactured by Datacube, Inc. Software to drive them and process the results was 
written in our laboratory. The result of digitization is a 320x240 point array 
representing the intensities in the image plane. Typically, there are about 6 or 7 bits 
of useful information (signal-to-noise ratio of about 100) in each point. Each frame 
represents information recorded in & s, a time that is significant in comparison with 
the period of the fast oscillation at  if,, (typically 7-10 Hz). Therefore, there is some 
(but not too much) time averaging of the wave pattern. 

The phenomena of interest concern the competition between two modes of different 
angular symmetry. This fact allows us to integrate the digitized light-intensity field 
over radial segments to obtain a one-dimensional intensity function Z(0, t )  for angular 
Fourier analysis. This averaging operation both reduces noise and simplifies the data 
analysis. Tests of reproducibility of the data show that the r.m.s. variation of this 
function from one picture to another is only 0.5% when a narrow time window of 
100 ps is used for synchronization of the data acquisition. If the time window is 
widened to 7 ms (sometimes necessary to obtain a sufficient number of coincidences 
when the pattern is changing rapidly) the r.m.s. variation increases to 4 yo. Thus, the 
digital imaging measurements are quite reproducible. The question of accuracy is 
considered in $3.2. 

There is one further experimental difficulty associated with the digital imaging 
method : spatial variations in the illumination cause the measured intensity to  have 
a spurious gradual angular variation. The measured intensity is approximately the 
product of a slowly varying background function and a rapidly varying function 
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related to the surface waves. We remove the background function by division before 
further processing and denote the resulting corrected intensity function by r(6, t ) .  

3.2. Measurement of time-dependent mode amplitudes 
To obtain the relative contributions of different values of 1 we calculate the magnitude 
squared of the complex Fourier series for the angular intensity function r(0) at each 
time step. The height of this angular spectrum P(1) a t  a given 1 is approximately 
proportional to  the square of the slowly varying amplitude a!(t). (Recall that  a:(t) 
is a fixed linear combination of g l ( t )  and h,(t) with coefficients that  depend on the 
timing of the data acquisition with respect to the forcing.) The constants of 
proportionality depend on radial integrals of the J1.  

Thus, this method allows an approximate time-resolved normal-mode analysis 
under certain conditions. The major limitation of the method is that  the optical- 
intensity field is not linear in the surface-wave height. This is not an  overwhelming 
difficulty because the main qualitative effect is to create spurious spatial harmonics, 
which can be easily ignored. But the measurement nonlinearities also mean that 
conclusions depending on the precise shape of the functions ap(t) cannot be drawn. 
This limitation is not serious in the present paper, but might be in other circumstances. 
If necessary the nonlinearities could possibly be measured and corrections applied. 
We have not done a quantitative study of this problcm, which is known to be a 
difficult one. 

As an example of the application of this method to  the problem a t  hand, we show 
in figure 4 the angular-intensity functions and corresponding power spectra for two 
times during the process of competition between the (4, 2 )  and (7 ,  3 )  modes. I n  (a )  
the pattern is dominated by the sevenfold mode. There are seven angular maxima, 
and the dominant spectral peaks are at 1 = 7 and 14. (The latter is probably due 
to a mixture of real-harmonic generation and imaging nonlinearity.) However, there 
is also a small peak a t  1 = 4 corresponding to the admixture of a small amount of 
the fourfold mode into the surface displacement. 

We find that in the shaded region ofthe phase diagram (figure 3 )  the angular-intensity 
pattern and relative spectral heights are time dependent. For example, in figure 4 ( b ) ,  
taken a few seconds later, the dominant spectral peaks are those for 1 = 4 and 8. The 
line at 1 = 7 cannot be resolved because i t  is small and too close to the harmonic of 
the fourfold mode at 1 = 8 .  By doing angular Fourier analysis a t  many times and 
plotting the square roots of the spectral heights P ( 7 )  and P(4), we obtain (approxi- 
mately, and up t o  a constant of proportionality) the time-dependent mode amplitudes 
a!(t) and a:(t). These functions are shown in figure 5.  The slow oscillation is periodic 
in this case with a period of 15 s. The period is about two orders of magnitude larger 
than that of the fast oscillation a t  ifo. We find that a:(t) leads a:(t) by about 90". 
This phase difference and qualitative visual observations indicate that energy is being 
transferred back and forth between the two modes. These results of the digital-imaging 
measurements are the basic quantitative evidence for our assertion that the slow 
oscillations are caused by competition between two spatial modes. 

Our method, based on shadowgraph imaging and one-dimensional (time-resolved) 
spatial Fourier analysis, is somewhat limited in its range of applicability. However, 
i t  does appear to be novel in allowing time-dependent mode amplitudes to  be 
measured semiquantitatively. If suitably extended to  a full two-dimensional normal- 
mode analysis, this type of measurement should have wide applicability. 
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FIGURE 4. Time-resolved spatial Fourier analysis is illustrated by (a )  the angular-intensity pattern 
T ( S )  and ( b )  the corresponding angular power spectrum P(2) for a n  oscillatory state in which the 
I = 7 and 4 modes are both present. Spectral peaks corresponding t o  harmonics of these modes are 
also substantial. The relative peak heights in the angular spectrum oscillate so that  at a later time, 
as shown in (c) and ( d ) ,  the fourfold mode is dominant, while the sevenfold mode is not visible. 
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FIGURE 5. Mode competition. The slowly varying mode amplitudes a:(t) and a:(t) oscillate 
periodically for f , ,  = 16.113 Hz. Chaotic oscillations are found at lower driving frequencies 
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4. Time-series analysis and visualization of the attractors 
The digital imaging technique could be used to study the dynamics of the slow 
oscillation. However, it requires spatial Fourier analysis at each time step, a rather 
laborious process involving tremendous amounts of data (about lo8 bytes for a 
minimal time series of 1000 points). Therefore, we use a different method for detailed 
studies of the mode competition. We monitor the time dependence by measuring the 
light intensity V ( t )  at a single point in the image as a function of time instead of 
digitizing the entire pattern. Although this provides no spatial information the 
signal-to-noise ratio is substantially better than can be obtained from a vidicon 
camera, a fact that  allows us to both reconstruct the shape of the attractor and obtain 
high-quality power spectra. 

(One possible objection to local sampling is that any rotation of the pattern would 
be an additional source of time dependence distinct from that provided by mode 
competition. However, our experience is that rotational motion does not occur, 
perhaps because of small unavoidable asymmetries in the shape of the contact line 
a t  the outer wall.) 

The local light intensity is monitored by a photodiode, and the fast component 
associatcd with the oscillation at  half the driving frequency is eliminated by lock-in 
detection. We digitize with 12-bit resolution, but the actual precision is about one 
part in 800. The sampling time is adjusted to provide 50 samples per oscillation period 
(10 s) for plotting trajectories in phase space, and about 6 samples per oscillation 
period for spectra and dimension measurements. 

4.1. Spectra 

The interaction region of the phase diagram was explored by varying A and fo 
separately. I n  both cases, as one crosses from the region of slow periodic oscillations 
into the chaotic region, one finds a period-doubling bifurcation followed (or accom- 
panied) by a transition to  chaos. A typical example is shown in figure 6, where time 
series are shown for three different driving amplitudes but fixed driving frequency 
of 16.05 Hz. I n  addition, power spectra of the time series are computed using standard 
fast-Fourier-transform methods and are shown on a logarithmic scale in figure 6. 

At a driving amplitude of 121 pm (figures 6 a ,  b )  the slow oscillation is periodic and 
the spectrum has a single sharp peak at  a frequencyp and harmonics. However, a 
subharmonic bifurcation occurs a t  A = 139 pm. At 149 pm this subharmonic is seen 
clearly both in the signal and in the spectrum (figures 6 c ,  d) .  A detectable increase 
in the noise level, and a slight broadening of the peaks, accompanies the growth of 
the subharmonic. Beyond 180pm the time record is clearly chaotic, as shown in 
figures 6 ( e ,  f). The spectral peaks (shifted slightly to the left) are quite broad, and 
the background noise level is high. There is some evidence of a second (noisy) 
subharmonic bifurcation with a broad spectral peak near fp and harmonics. We are 
unable to tell whether the growth of noise illustrated in figure 6 is entirely continuous: 
it might possibly involve a discontinuous jump. At amplitudes higher than 200 pm 
there is no mode competition. The oscillations disappear and only the fourfold 
symmetric mode is present. 

Note that this transition sequence is not the only possible one. As indicated by the 
structure of the parameter space (figure 3) it is possible to  go directly to  chaos from 
the pure (4, 3) mode simply by decreasing the driving amplitude. 
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FIGURE 6. The transition from periodic to chaotic oscillation. Time series and corresponding power 
spectra of the slowly varying part of the local light intensity are shown forf,, = 16.05 Hz and three 
different driving amplitudes. Broadband noise is associated with the appearance of a subharmonic 
if* of the dominant oscillation. 

4.2.  Phase portraits 
The behaviour illustrated in figure 6 is certainly suggestive of the existence of a strange 
attractor since the transition seems to involve a subharmonic bifurcation (a common 
nonlinear process), and we know that only two spatial modes are present. I n  order 
to visualize the attractor we construct phase portraits by embedding the trajectories 
in an m-dimensional phase space as suggested by Packard et al. (1980) and Takens 
(1981), and found to be useful in other experiments (Brandstater et al. 1983). We 
choose phase-space coordinates { V ( t ) ,  V ( t + 7 ) ,  . . ., V ( t +  (m- l ) ~ ) } ,  wherc 7 is an 
arbitrary delay. The phase portraits constructed in this way generally have the same 
dynamical properties as those constructed from a sct of more logically chosen 
independent variables (Grassberger & Procaccia 1983 a ) .  I n  our case, these preferred 
variables might be the amplitudes g l ( t )  and h,( t )  of the two spatial modes. The 
embedding method depends on the fact that in a nonlinear system all variables are 
effectively coupled. However, i t  is basically a way of extracting information from a 
single time series that would be provided more ideally from precise measurements 
of all of the mode amplitudes. Hence it should be used with caution. 

The results of a two-dimensional recosntruction are shown in figures 7 ( a ) ,  ( b )  for 
the data reported in figure 6 .  These phase portraits may also be regarded as 
projections of higher-dimensional phase portraits on the plane defined by V ( t ,  +7) 
and V( t , ) .  In these figures, the delay 7 is 3 s and the sampling time is 0.2 s. In order 
to obtain a sensible reconstruction the sampling time must be very short compared 
with the basic oscillation period T, while the delay time should be only somewhat 
less than T. (The reconstruction process has been studied empirically by Roux, Simoyi 
& Swinney 1983.) If the delay time is taken to be too small the attractor becomes 
compressed along the diagonal, and the structure cannot be seen. We varied the delay 
time in order to obtain an optimal reprcsentation of the data. 

The first portrait (figure 7 a which corresponds to the data of figure 6 a )  is obviously 
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FIGURE 7. Phase portraits corresponding to the top two panels of figure 6. The first one is 
clearly a limit cycle. The second shows a subharmonic (extra loop) but is also noisy. 

a limit cycle. The second one (figure 7 b  corresponding to figure 6c) shows the 
subharmonic bifurcation and also some noise. It is not immediately obvious whether 
this should be regarded as intrinsic dynamical noise or noise owing to  amplified 
external perturbations. It is definitely much larger than the measurement noise. 
Finally, we show in figure 8(a )  the phase portrait for the strongly chaotic state at 
A = 190 pm (corresponding t o  figure 6e).  Here, the trajectories are spread over the 
plane. By following visually a swath of closely spaced lines one can see qualitatively 
the strong divergence of nearby trajectories that is characteristic of a strange 
attractor. 

Two dimensions are clearly inadequate because trajectories cross. Therefore, we 
constructed three-dimensional phase portraits and then observed intersections 
(Poincar6 sections) with a plane defined by the condition V ( t )  = V( t  + T ) .  The result is 
shown in figure 8 ( b )  for the strongly chaotic state. (Only the crossings in one direction 
are used.) The points fall along a number of lines, suggesting that the actual orbits 
lie on many sheets. This multi-sheeted geometry is another hallmark of a strange 
attractor. 



392 

10 

h 
I- 

t o  
s 

- 10 

S. Ciliberto and J 

A = 190 wm 

10 

h 

N 

; t o  
s 

- 10 

D. Gollub 

A = I90 pm 

FIQURE 8. Phase portrait and corresponding Poinear6 section for the noisy data in the lower panel 
of figure 6. Divergence of nearby orbits can be seen qualitatively in the phase portrait, while the 
map shows that the attractor has several sheets. 

5. Dimension measurements 
5.1. Background 

One of the most distinctive characteristics of a strange attractor is that it is (almost 
always) an object of fractional dimension. This means that the number of cells of size 
E needed to cover the attractor scales as E - ~  in the limit of small E ,  where D, the fractal 
dimension, is generally not an integer. (For simple objects D coincides with the 
ordinary Euclidean dimension, as the reader may easily check.) Qualitatively, this 
is a reflection of the fact that  a chaotic attractor is a complex structure with much 
open space; its intersection with a line often forms a Cantor set. 

Measurement of D is a useful way to characterize the degree of chaos, and the 
results may suggest an appropriate model. Although it  is very difficult to obtain D 
from an experiment several other definitions of dimension do lead to practical 
prescriptions for measurement. The information (or pointwise) dimension d may be 
computed from the fact that  the number of points S ( E )  contained in an m-dimensional 
ball of radius E scales as ed on the average (Farmer ef al. 1983). More precisely, 

To measure d i t  is sufficient in principle to compute S ( E )  for a ball centred a t  a 
particular point on the attractor, avcrage its logarithm over a sufficient number of 
points on the attractor, plot (log S ( E ) )  versm log E ,  and determine the slope. It is 
necessary, however, to vary the embedding dimension m, since i t  is not known in 
advance how large a value is necessary. Once m is sufficiently large, making i t  larger 
does not change d (except for statistical fluctuations). 

A second quantity known as the correlation dimension u (Grassberger & Procaccia 
1983a) can also be easily measured. It is defined in terms of a quantity C ( e ) ,  the 
number of pairs of data points whose separation in phase space is less than E (divided 
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by N 2 ,  where N is thc total numbcr of data points). For large N this quantity scales 
as E ” ,  so that one can define v as follows: 

log C(E) 
v = lim -. 

t+n log E 

The various dimensions satisfy the inequalities v < d < D. In most cases that have 
been tested, however, these different ways of defining dimension give almost identical 
results. 

In order to characterize the attractors observed in our experiments we have 
measured the dimension as a function of driving amplitude. We used files of 2048 
points with a sampling time of 1.5 s, and a delay time for embedding of 1.5 s. The 
sampling time must be longer for the dimension calculation than for the plotting of 
phase portraits in ordcr to  obtain a grcater number of orbits (about 300) and hence 
fill out the attractor more thoroughly. We varied the delay time in order to obtain 
as large a scaling range for S(e)  or C(e)  as possible. We find that the results are not 
appreciably different for shorter data files of 1024 points, although statistical 
fluctuations are greater. Files larger than 2048 points can be used, but computations 
are then excessively time consuming (more than a few hours on an LSI 11/23 
computer). The computation times required to  obtain d and v are comparable. 

5.2. Results of dimension measurements 

The function N2C(e)  for the strongly chaotic data of figures 6 ( e ,  f ) is shown in figure 9 
on logarithmic scales for various values of the embedding dimension. We show the 
same information more sensitively in figure 10(a), where the derivative of log C(e)  
is plotted. The slope can be seen to reach a limiting value in the scaling region (near 
log E = - 1 )  that  does not increase oncc m is larger than about 4. This tells us  that 
a phase-space dimension of 4 is sufficient to represent this data. The limiting value 
of the slope, i.e. the height of the plateau in figure lO(a), is 2.20+0.04. This is the 
correlation dimension v of the attractor (at A = 190 pm) in the chaotic regime. 

The rangc of scaling behaviour (region of constant slope) is limited on the high end 
by thc size of the attractor, and on the low end by instrumental noise. When e becomes 
so small that it is comparable with the noise, the slope rises to a value roughly equal 
to the embedding dimension. As proposed by Ben-Mizrachi & Procaccia (1984) this 
is an excellent way to distinguish between environmental or measurement noise and 
fluctuations that are intrinsic to  the dynamics of the strange attractor (chaos). The 
former will cause the full dimension of the available phase space to  be utilized on 
small scales, and hence leads to  a non-saturating slope at low e. These regions are 
clearly separable in figure 10 ( b ) ,  where measurement noise dominates for log E < - 1 .  
This method of distinguishing chaos from random noise was studied by Brandstater 
& Swinney (1984). 

We have also computed the function (log S ( s ) )  to obtain the information dimension. 
The derivative of (log S(e)) is shown in figure 10(b). The slopc saturates a t  a value 
of d = 2.22f0.04 for m > 4 in the scaling region. (However, the behaviour for small 
e is different for the two methods. We find that the information method is more 
sensitive to statistical fluctuations and requires longer data sets to exhibit the 
behaviour a t  small E properly.) The two methods are seen to  give essentially identical 
results. The correlation dimension v and information dimension d are equal to within 
the accuracy of the measurements. 

We measured the dimensions for lower driving amplitudcs as well. In  the regime 
of periodic oscillation they are approximately unity, as one would expect for a limit 
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FIGURE 9. The correlation function C(E) for various values of the embedding dimension m. The 
limiting slope for large wz is the correlation dimension u of the attractor. 
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FIGURE 10. Measurements of the information dimension d and correlation dimension v.  (a )  The 
derivative (local slope) of the function log C(E) with respect to log E reaches a limiting value in the 
scaling range of d = 2.20+0.04 for m 2 4. (b) The derivative of the function (log S(e ) )  behaves 
in the same way (except at low E ,  as explained in the text). 

cycle. Just  above the noisy subharmonic bifurcation we are unable to  make a reliable 
measurement because the trajectories are so close together (figure 7 b )  that much 
longer files would be needed to obtain adequate statistics. 

5.3.  Positive Lyapunov exponent 

There is no way to obtain a fractal attractor without at least one positive Lyapunov 
exponent, corresponding to stretching of displacements in one locally defined 



Chaotic mode competition in parametrically forced surface waves 395 
I I I 

0.4 

0.3 
h - 
I 
3 2 0.2 

0.1 

0 
1 3 5  7 9 11 13 

FIQURE 11. Dependence on embedding dimension of the function KZ,+ (defined in (5.3)), which is 
less than or equal to the sum of the positive Lyapunov exponents. The curves are fits to the data 
for the chaotic state (upper points) and periodic state (lower points), for log E = - 1 .  The positive 
limit of the upper curve for large rn demonstrates that at least one Lyapunov exponent must be 
positive, so that the trajectories exhibit exponential divergence. 

nz 

direction in phase space. It is possible to make a quantitative estimate of the degree 
of stretching or sensitive dependence on initial conditions (Grassberger & Procaccia 
1983b). The curves of log C ( E )  for different values of the embedding dimension m are 
parallel but displaced vertically from each other (see figure 9). One may define a 

This quantity should reach a definite limit K, for large m, and E in the scaling range ; 
it  is known to be less than or equal to the sum of the positive Lyapunov exponents. 

Data for K,+ in the strongly chaotic state (figures 6 e , f )  and log E = - 1 are shown 
in the upper part of figure 11 by the crosses. (The triangles are computed using 
(log S,,,(s)) instead of log C,(E) in (5.3), with essentially identical results.) Similar data 
are shown for the periodic regime (figures 6a ,  b) in the lower part of figure 11.  In  order 
to determine the large-m limit, we fitted the data in each case to the following 
function : 

(5.4) 

The fits are shown by the solid lines. We found K ,  = 0 . 1  f 0.01 s-1 in the chaotic state. 
(Within the scaling range, the variation with e is of the order of the indicated 
uncertainty.) This means that at least one Lyapunov egponent is positive. If exactly 
one Lyapunov exponent is positive (i.e. trajectories diverge in single locally defined 
direction, but not in other directions) then i t  must be this large. We may estimate 
that two trajectories initially displaced by a sufficiently small amount in this direction 
will separate on the average by a factor of el in 1 0  s, which is the mean period of 
motion on the attractor. In contrast, K, = 0.01 + O . O l  s-l in the periodic state. 
Thus there is no stretching of trajectories in the periodic state. 
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6. Summary and conclusion 

We list here the major results of this investigation : 
1. We extend previous experimental work on surface waves in a vertically 

oscillating fluid layer. Regions of mode competition occur (figure 3) in which the wave 
pattern oscillates either periodically or chaotically with a period long compared with 
that of the forcing. 

2. We use digital imaging methods and time-resolved spatial Fourier analysis to 
measure the slow mode amplitudes a:(t), which are fixed linear combinations of the 
slow coefficients defined in (2.3). They oscillate with a phase difference of about 90" 
on the slow timescale. 

3. We study the transition to chaos by a local-sampling technique. Power spectra 
(figure 6) reveal that the noise onset involves a single subharmonic bifurcation of the 
slow variables. Phase portraits and Poincark maps (figures 7 and 8) allow the 
attractors to be visualized. 

4. Dimension measurements (figures 9 and 10) demonstrate that, over the ob- 
servable range of scales, the attractor is an object of fractional dimension close to 2.2 
in the regime of chaotic mode competition. The dimension of the attractor depends 
weakly on the driving amplitude. A four-dimensional phase space is required to 
represent the data. 

5. The data also show that there must be at  least one positive Lyapunov exponent 
(figure 11) so that nearby trajectories diverge from each other exponentially on the 
average. Therefore, the chaotic mode competition is appropriately described as a 
strange attractor. 

6.1. Main results 

6.2. Discussion 

One novel feature of this investigation is the direct measurement of mode amplitudes 
in a hydrodynamic system using digital image-processing techniques. We believe that 
this is a technique with wide applicability to a variety of systems. However, for many 
applications it will be necessary to find optical methods that are more closely related 
to the hydrodynamic variables than is the case for the shadowgraph approach used 
here. For example, one might study interfacial waves a t  the boundary between a 
transparent fluid and an optically absorbing fluid with the same index of refraction. 
The interfacial-displacement field might then be determined directly from the 
optical-intensity field. 

In  many studies of hydrodynamic chaos the spatial structure of the flow is not 
known. Here, however, we know that the chaotic behaviour is caused by competition 
between two of the normal modes of the system. It should be possible to use this 
information to derive a coupled-mode model from the equations of motion of the 
system, perhaps along the lines suggested by Miles (1984b). Despite the apparent 
simplicity of the physical phenomena the mathematical difficulties seem to be 
substantial. 

In  order to summarize the data from a purely empirical point of view we Considered 
phenomenological models based on the fact that  each mode amplitude al( t )  follows 
a Mathieu equation in a linearized inviscid approximation (Benjamin & Ursell 1954). 
We coupled two Mathieu oscillators after introducing damping and cubic nonlinearity. 
We found that one model of this type, with suitable choices for the parameters, could 
represent many of the experimental results fairly well including the qualitative 
structure of the parameter space (figure 3), the route to chaos (figure 6),  and the 
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dimension of the resulting strange attractor. However, the shapes of the stability 
boundaries were significantly different from those determined experimentally, and 
certain aspects of the model lack theoretical justification. This model has been 
described elsewhere (Ciliberto & Gollub 1984, 1985). 

The theoretical literature on this problem of vertically forced surface waves seems 
quite limited in comparison with the extensive literature on models for Rayleigh- 
B6nard convection patterns. Although surface-wave problems are difficult wc believe 
that more can be done to develop useful model systems by suitable approximations 
to the equations of motion. 

Many questions remain for future work. For example, do all nearly degenerate 
modes compete, or only those with certain symmetry properties Z How does the flow 
become spatially chaotic ‘1 What happens a t  higher driving frequencies, where the 
density of modes is much greater Z 
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